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Abstract

Onsite wastewater treatment systems (OWTS) can contribute nitrogen (N) to coastal waters. In 

coastal areas with shallow groundwater, OWTS are likely affected by meteorological events. 

However, the meteorological influences on temporal variability of N exports from OWTS are not 

well documented. Hydrogeological characterization and seasonal monitoring of wastewater and 

groundwater quality were conducted at a residence adjacent to the Pamlico River Estuary, North 

Carolina during a two-year field study (October 2009–2011). Rainfall was elevated during the first 

study year, relative to the annual mean. In the second year, drought was followed by extreme 

precipitation from Hurricane Irene. Recent meteorological conditions influenced N speciation and 

concentrations in groundwater. Groundwater total dissolved nitrogen (TDN) beneath the OWTS 

drainfield was dominated by nitrate during the drought; during wetter periods ammonium and 

organic N were common. Effective precipitation (P-ET) affected OWTS TDN exports because of 

its influence on groundwater recharge and discharge. Groundwater nitrate-N concentrations 

beneath the drainfield were typically higher than 10 mg/l when total bi-weekly precipitation was 

less than evapotranspiration (precipitation deficit: P<ET). Overall, groundwater TDN 

concentrations were elevated above background concentrations at distances >15 m downgradient 

of the drainfield. Although OWTS nitrate inputs caused elevated groundwater nitrate 

concentrations between the drainfield and the estuary, the majority of nitrate was attenuated via 

denitrification between the OWTS and 48 m to the estuary. However, DON originating from the 

OWTS was mobile and contributed to elevated TDN concentrations along the groundwater 

flowpath to the estuary.
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Introduction

Excess nutrient inputs have resulted in impairments to the majority of US coastal rivers and 

bays (Howarth et al. 2002). In coastal settings, nitrogen (N) is of particular concern because 

eutrophication in most estuaries in the temperate zone is N-limited (Howarth and Marino 

2006) and increases in N inputs have led to increased harmful algal blooms and eutrophic 

conditions (Rabalais et al. 2009). Major N inputs are from point and non-point sources, 

typically agricultural fertilizer, animal manure, atmospheric deposition, and effluents from 

wastewater treatment systems (Howarth et al. 2002). Although nutrient management efforts 

have focused primarily on agricultural inputs (Heathwaite et al. 2000), in many coastal areas 

research findings have shown that wastewater may be the dominant N source that can affect 

groundwater and surface water quality (Valiela et al. 1997; Kroeger et al. 2006a). Estimates 

of N inputs to coastal watersheds in the eastern U.S. suggest that residential on-site 

wastewater treatment systems (OWTS, also known as septic systems) may contribute from 

4–64 % of the N loading (McClelland and Valiela, 1998; Pradhan et al. 2007). Watershed-

scale estimates of N inputs from OWTS have been challenging to obtain because N removal 

from conventional OWTS can be highly variable across space and time.

Although much work has been focused on OWTS N exports, it is not well understood how 

rainfall and groundwater levels affect OWTS N treatment. Nutrient leaching and transport is 

generally enhanced in settings immediately adjacent to water bodies, with sandy soils, and 

elevated water tables (Carey et al. 2013). Our objective was to quantify N transport from an 

OWTS in a sandy coastal surficial aquifer adjacent to a nutrient-sensitive estuary and 

evaluate the meteorological controls on N exports. The goals were to assess how weather-

related effects on water table depth and separation distance influence OWTS N treatment 

and to quantify the effects of subsurface wastewater inputs on nitrogen fate and transport 

along a groundwater flowpath to an estuary.

In a review of eight published studies, Valiela et al. (1997) reported that OWTS can retain 

from 10–90% of N. In situations when N-retention is low, exports from OWTS can affect 

human and ecological health, locally by affecting drinking water supplies (Harman et al 

1996) and regionally by contributing to nutrient enrichment of surface waters (Valiela et al. 

1997). In coastal settings where sandy soils predominate and water tables are shallow (Fan et 

al. 2013), conventional OWTS are likely to contribute to elevated nitrate (NO3
−) 

concentrations to the shallow groundwater and surface water (Gold and Sims 2001). This is 

significant because water quality of coastal estuaries can be affected by N inputs at 

concentrations lower than the National Primary Drinking Water Maximum Contaminant 

Levels of 10 mg/l NO3
−-N (Environmental Protection Agency (USEPA) (2009), and N 

concentrations at levels above 2 mg /L as NO3
−-N may contribute to eutrophic conditions 

and may be toxic to certain aquatic organisms (USEPA 2000; Gold and Sims 2001; Camargo 

et al. 2005).

OWTS consist of a septic tank, drainfield, and the native soils. Organic and ammonium 

(NH4
+) forms of N are commonly the dominant forms in the raw wastewater entering the 

septic tank. The anaerobic environment of the septic tank favors ammonification and 

ammonium becomes the dominant N-form in its effluent. Conventional OWTS tanks are not 
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generally designed for treating N, thus they remove only a small fraction of the N (10–20%) 

from wastewater before disposal to the subsurface (Oakley et al. 2010). The majority of N 

treatment typically occurs in the soils as the effluent percolates through the unsaturated zone 

and most of the N is expected to convert to the nitrate form. In subsurface anaerobic 

environments that contain denitrifying bacteria and organic matter, denitrification can lower 

NO3
−concentrations in soil water and groundwater (Wilhelm et al. 1994a). Since OWTS 

wastewater is often discharged at depths of ~1 m in the subsurface, plant uptake and 

denitrification in the shallow organic soils is generally minimal (Gold and Sims 2001). 

Studies conducted on systems located in sandy soils show that OWTS NO3
− may cause 

elevated NO3
− concentrations in groundwater (Robertson et al., 1991; Humphrey et al. 

2010a). The extent of NO3
− contamination is variable and is a function of a number of 

controls including: water table depth, soil texture, OWTS density, distance from the 

drainfield, groundwater flow velocity, dilution/dispersion, biomat formation, climate and 

seasonal factors, presence of riparian buffers, age and design of the system, water use, 

household practices, and system maintenance (Beal et al. 2005, Gold and Sims 2001, Valiela 

et al. 1997, Oakley et al. 2010).

Although numerous studies have focused on the effects of soil type and groundwater depth 

on OWTS N treatment (Cogger and Carlile 1984; Karathanasis et al. 2006; Humphrey et al. 

2010a) few studies have focused on the effects of meteorological conditions on OWTS N 

treatment in coastal settings. Arnade (1999) looked at the effects of increased summer 

rainfall patterns and shallow water tables on groundwater NO3
−-N concentrations in Palm 

Bay, FL. She found that NO3
−-N concentrations in groundwater generally decreased with 

distance from the drainfield, but the decline was less pronounced during the wet season. For 

15 systems in the North Carolina Coastal Plain, Cogger and Carlile (1984) found that 

groundwater N species and concentrations were influenced by seasonal variations of the 

water table. The systems that were continually saturated had the poorest performance, and 

the greatest transport of N occurred for systems located in areas with high gradients and 

continuous soil saturation. Those systems tended to export more NH4
+ but less NO3

−, 

relative to better drained systems. In a one-year study, LaPointe et al. (1990) performed 

monthly sampling of N in surface water and groundwater in a limestone aquifer in the 

Florida Keys and found elevated N linked to OWTS. They found elevated N concentrations 

in surface waters during summer months presumably due to increased groundwater nutrient 

inputs, since hydraulic gradients can be increased during the summer wet season. Although 

rainfall did not show a strong correlation with groundwater nutrient concentrations, potential 

evapotranspiration was significantly correlated with groundwater nutrient concentrations, 

presumably due to the influence of evaporative losses on groundwater recharge potential. 

Overall, these studies indicated that weather patterns can affect OWTS N treatment and the 

fate and transport of N in surficial aquifers.

In coastal areas, climate change and the resultant sea level rise has the potential to affect 

OWTS N treatment. There is growing concern that changes in temperature and precipitation 

patterns (USEPA 2012a) and sea level rise (Werner and Simmons 2009; USEPA 2012b) may 

affect the efficiency of conventional OWTS to remove/retain N prior to discharge to 

groundwater and eventually surface waters. A better understanding of OWTS N 

contributions to coastal aquifers is needed to improve model estimates, evaluate potential 
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impacts to nutrient sensitive estuaries, and to help design and implement OWTS that 

minimize the risks to human and ecosystem health.

Materials and Methods

Site Selection

We selected a year-round residential site adjacent to the nutrient sensitive waters of the 

Pamlico River Estuary in coastal Beaufort County, North Carolina in 2009. We selected this 

site because it was directly upgradient of the estuary, had a sandy surficial aquifer that was 

connected to the estuary, and based on initial study (Deal et al. 2011) it was compliant with 

the North Carolina setback and separation distance regulations (NC DHHS 1990) (Figure 

1.a.). In addition, the homeowners were willing to allow soil coring and groundwater 

monitoring at their residence.

Site characterization and orientation of subsurface wastewater plume

During initial site characterization studies (Humphrey et al. 2010b) the OWTS components, 

including the septic tank and drainfield trenches, were located by use of a tile drain probe 

and the orientation of the subsurface wastewater plume was estimated by use of an 

OhmMapper TR1 electrical resistivity mapper (Geometrics, Inc. San Jose, CA). Resistivity 

declines adjacent to subsurface wastewater disposal sites have been used to infer the location 

of wastewater-affected groundwater in Mountain (Roy et al. 2008) and Coastal Plain settings 

(Smith 2013). During the current study, we generated a two-dimensional electrical resistivity 

profile from an electrical resistivity survey conducted in February 2011 to confirm the 

influence of wastewater on groundwater quality downgradient of the drainfield. The 

OhmMapper transmitter and receiver were separated by 2.5, 5, and 10 m and towed over the 

transect line 3 times using 5 m dipoles. By spacing the transmitter and receiver at greater 

separation spacings, the current penetration depth increased, which allowed to image to 

depths below the water table (deeper than 1.5 m). The surveys provided apparent resistivity 

data for the subsurface along the transect line. We inverse modeled the apparent resistivity 

data with RES2DINV software™ (Geotomo Software, 2014). We compared the earth 

resistivity data with groundwater specific conductivity data collected in piezometers on 

February 21, 2011 (Figure 1.b.). The decline in resistivity and increase in groundwater 

conductivity adjacent to, and downgradient from, the drainfield suggested the approximate 

location of wastewater-affected groundwater. However, it should be noted that directly 

adjacent to the estuary, salinity may also result in increased groundwater conductivity.

We estimated the direction of groundwater flow at the site to be in the southerly direction 

towards the estuary, from a three-point problem solution at the residence (Humphrey et al. 

2010b; Humphrey et al. 2013). The tile drain probe survey revealed that the OWTS 

drainlines were buried at approximately 60 cm depth below the land surface. We installed 

piezometers and lysimeters upgradient of the drainfield, in the drainfield, and at various 

distances downgradient from the drainfield on and adjacent to the projected groundwater 

flowpath to the estuary. We installed a total of 28 piezometers up- and down-gradient of the 

OWTS groundwater flowpath for groundwater sample collection and monitoring (Figure 

1.a.) at depths of 1.3 to 3.7 m. During the second year of study (2011) we installed six 
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porous cup tension lysimeters as follows: one group at 30, 45, and 60 cm depth in the 

drainfield and another group at the same depths in an area upgradient of the drainfield. We 

used the lysimeters to collect soil water quality data at bi-monthly intervals in the drainfield 

and upgradient soils.

Determination of water table depth

We determined bi-monthly depth to water-table measurements with a Solinst Model 107 
Temperature Level and Conductivity (TLC) meter (Solinst Canada Ltd., Georgetown, ON). 

On each sampling date, we estimated the separation distance between the water table and the 

drainlines as the difference between the groundwater depth at piezometer 4s and the depth to 

the drainlines. In piezometers 3 and 5, near the drainfield disposal trenches, we installed 

automated Hobo U-20 water level loggers (Onset Computer Corp., Bourne, MA) 

programmed to record groundwater levels every 0.5 hours. We used the automated water 

level measurements to observe temporal vertical separation distance (trench bottom and 

water table) and water table dynamics. In addition, we installed groundwater level loggers in 

piezometers 2, 3, 13, and 15, away from the drainfield (Figure 1.a.). To determine 

groundwater and septic tank pH, specific conductivity, temperature, and dissolved oxygen 

concentrations in groundwater and wastewater at the site we used a calibrated YSI 556 field 

meter (YSI Inc., Yellow Springs, OH). In addition, at piezometers 5 (adjacent to the 

drainfield) and 2 (upgradient from the drainfield), we used two YSI 6920 data logging 

sondes to record groundwater specific conductivity at a 30-minute interval. We obtained 

rainfall data from a weather station (Warren Field- 17 km to the northwest in Washington, 

NC) through the NC CRONOS database for the period of 2009–2011. Monthly reference 

crop evapotranspiration (ET) was estimated using the Penman-Monteith method (Monteith, 

1965) at the Tidewater Research Station, Plymouth, NC (approximately 40 km to the north) 

(State Climate Office of North Carolina, 2014a). Typically, ET in the region is elevated 

during the crop growing season (April-October) and minimal during the dormant season 

(November-March) (USDA 1997, Sun et al. 2002).

Sampling and analyses of wastewater and groundwater samples

We sampled the septic tank monthly from October 2009 to May 2010 and from January 

2011 to October 2011. We collected groundwater samples from piezometers and surface 

water samples from the estuary bi-monthly from November 2009 to May 2010 and from 

January to October 2011 (Figure 1.a.). A gap in funding caused the sampling pause between 

May 2010 and January 2011. We used a new bailer for collecting groundwater samples from 

each piezometer and purged each piezometer prior to sampling. We kept samples on ice and 

delivered them to the East Carolina University Central Environmental Laboratory (CEL) 

within 12 hours where laboratory staff filtered the samples prior to nitrogen analyses. 

Ammonia was analyzed by use of the Solorzano method (Standards Methods for the 

Examination of Water and Wastewater, 1995). Dissolved Kjeldahl N, nitrate/nitrite, and 

chloride were analyzed by use of a SmartChem 200 discrete wet chemistry analyzer (Westco 

Scientific Instruments Incorporated, Brookfield, Connecticut).

To estimate the effect of dilution on the reduction of groundwater total dissolved N (TDN) 

concentrations in the drainfield, we used a two-component mixing model using the end 
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members of wastewater and background groundwater TDN and chloride (Cl−) 

concentrations, based on the following equation:

(Eq. 1)

where:

Cgwm is the measured groundwater concentration (mg/l)

Cww is the wastewater concentration (mg/l)

fgw is the fraction of groundwater, and

Cgwb is the background groundwater concentration (mg/l)

We collected groundwater samples for isotopic analysis from piezometers on four dates: 

1/25/10; 5/24/10; 2/18/11; and 6/6/11. The University of California, Davis Stable Isotope 

Facility conducted the isotopic analysis (UC Davis, 2013). They analyzed groundwater 

samples for 15N and 18O in NO3
− using a ThermoFinnigan Gas Bench plus PreCon trace gas 

concentrations system interfaced to a ThermoScientific Delta V Plus isotope-ratio mass 

spectrometer (Bremen, Germany). The Stable Isotope Facility’s staff used the methods of 

Sigman et al. (2001), Casciotti et al. (2002), and Granger and Sigman (2009), for the 

analyses of 15N and 18O in NO3
−.

Statistical analysis

We used non-parametric Mann-Whitney tests (Conover and Iman1981; Conover 1999) to 

compare the distributions of groundwater TDN concentration for UG (upgradient) 

groundwater vs. groundwater affected by the OWTS (DF, GW<15m, GW>15m). We 

adjusted the significance threshold to address potential Type I errors using the Bonferroni 

method recommended by Abdi (2007) and conducted all statistical analyses using Minitab v. 

16 (Minitab Incorporated, State College, Pennsylvania). The Bonferroni method is one of 

the methods used to adjust multiple comparisons. We used the 15 m distance because it 

corresponds to the North Carolina minimum surface water setbacks for OWTS (NC DHHS, 

1990).

Results and Discussion

OWTS Effects on Groundwater Nitrogen Concentrations

Electrical resistivity patterns and groundwater specific conductivity patterns suggested that 

wastewater inputs caused elevated total dissolved solids in the surficial aquifer and that a 

wastewater plume extended from the drainfield to the estuary (Figure 1.b.). The mean 

groundwater specific conductivity and TDN values for the duration of the study were 

elevated along the projected groundwater flowpath to the estuary (Table 1.a.). The septic 

tank had elevated specific conductivity, temperature, and TDN relative to groundwater at the 

site. In the tank, DON was the dominant species, NH4
+-N was also elevated, but NO3

−-N 

was generally absent. Groundwater upgradient (UG) of the OWTS drainfield had low 

concentrations of TDN (generally present as NH4
+ and DON), low specific conductivity, and 

elevated dissolved oxygen concentrations, compared to groundwater adjacent to and 
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downgradient from the drainfield. As groundwater flowed below the OWTS drainlines, 

dissolved oxygen declined, specific conductivity increased, and all N species increased. The 

dominant N-species in the drainfield (DF) groundwater was NO3
−. At greater distances from 

the drainfield, the N-species concentrations declined. Table 1.b. shows results of non-

parametric Mann-Whitney tests (Conover and Iman 1981, Conover 1999) adjusted for 

multiple comparisons using the Bonferroni method (Abdi, 2007). Tests revealed that NO3
−-

N, DON, and TDN concentration distributions were significantly greater (p<0.0125) in the 

DF groundwater and GW<15 m from the drainfield than the UG groundwater. As distance 

from the drainfield increased, the differences between UG groundwater concentrations and 

groundwater concentrations downgradient of the OWTS drainfield decreased. However, 

Mann-Whitney tests adjusted for multiple comparisons indicated that DON and TDN 

concentration distributions were still significantly greater (p<0.0125) in the DF, GW<15 m, 

and GW>15 m than the UG groundwater (Table 1.b.).

Influences on Drainfield Groundwater Total Dissolved Nitrogen Concentrations

Drainfield groundwater TDN concentrations were influenced by the loading of N from the 

tank, the vertical separation distance between the water table and the drainlines (Figure 2.a.), 

and the difference between precipitation and evapotranspiration (P-ET) (Figure 2.b.). There 

was a strong inverse correlation between the amount of precipitation excess and drainfield 

groundwater TDN concentration (Pearson correlation coefficient=−0.73; p=0.025). During 

periods of precipitation deficit (precipitation<evapotranspiration), median drainfield 

groundwater TDN concentrations were generally elevated (33.8 mg/l). In contrast, during 

periods of precipitation excess (precipitation>evapotranspiration), median drainfield 

groundwater TDN concentrations were generally lower (9.7 mg/l) and the distributions were 

significantly different (p=0.046) than during periods of precipitation deficit (Figure 2.c.).

The vertical separation distance between the water table and the drainlines was influenced 

by recent meteorological conditions (Figure 3.a.). When precipitation excess occurred, the 

separation distance was smaller. During extreme wet conditions (following Hurricane Irene) 

the groundwater was elevated above the drainlines following a flood event that resulted in a 

negative separation distance. In contrast, during the drought conditions that occurred in the 

spring and summer of 2011, the separation distances increased up to approximately 1 m. In 

North Carolina, the required separation distance for group I sandy soils is 45 cm, and this 

requirement was met for 4 of 9 sampling dates. When the conditions were wetter 

(precipitation excess) the separation distance was more likely to be less than the NC required 

45 cm. Separation distance had an influence on N speciation in drainfield groundwater; the 

dominant N species was NO3
− during the second year of study when drought conditions 

were common. NH4
+ and DON made up a larger percentage of the TDN during the wetter 

first year. We compared these data to those from a previous study of 16 OWTS in coastal 

North Carolina (Humphrey et al. 2010a) and found a similar pattern of increasing NO3
− 

dominance with increased separation distance (Figure 3.b.).

The relationship between greater separation distance and increased nitrification has been 

documented in the conceptual model of Wilhelm et al. (1994b) and in several field studies in 

coastal North Carolina (Cogger et al. 1988, Humphrey et al. 2010a). In their study of the 
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effects of water table variability on OWTS N treatment, Cogger et al. (1988) found that 

NH4
+ was dominant at locations with shallow water tables, and NO3

− dominated at locations 

where the water table was deeper and separation distance was greater than 30 cm. At 

shallow groundwater locations, during dry periods the presence of NO3
− increased 

suggesting that the seasonal variations in aerobic conditions could lead to greater NO3
−-N 

concentrations in groundwater during drier conditions, presumably due to increased 

nitrification. Although these studies did not directly show the link between precipitation 

deficits and nitrification, an earlier study by Starr and Sawhney (1980) monitored the effects 

of a septic system on drainfield soil water N concentrations over a two year period. They 

found that during a year with greater rainfall, NH4
+ was more mobile and little nitrification 

occurred. During the following year, 50% less rainfall occurred and the drier conditions led 

to increased nitrification and a pulse of NO3
− in the drainfield. They suggested that rainfall 

amounts can have an indirect control on N mobility, due to the influence on N-speciation.

Nitrogen Speciation and DON Mobility

In the septic tank, wastewater TDN was dominated by DON, with lesser concentrations of 

NH4
+-N. In the soil water below the drainfield, NO3

−-N was the dominant N species and 

DON and NH4
+-N were present at low concentrations providing evidence of effective 

nitrification in the drainfield soils (Table 1.a.). However, during wet periods that occurred in 

the first year of study, NH4
+-N and DON were elevated in the groundwater beneath the 

drainfield, relative to NO3
−-N (Figure 4). Along the groundwater flowpath from the 

drainfield to the estuary, NO3
−-N was present at the highest concentrations, particularly 

during drought conditions in year 2 (Figure 4). At distances greater than 15 m downgradient 

from the drainfield Mann-Whitney tests adjusted by the Bonferroni method for multiple 

comparisons revealed that only DON and TDN concentrations were significantly greater 

(p<0.0125) than background concentrations (Table 1.b.).

Our data suggested that groundwater NH4
+-N concentrations would decline to background 

concentrations prior to discharge to the estuary, but DON and to a lesser extent NO3
−-N 

could still be elevated relative to background concentrations. Interestingly, the groundwater 

DON concentrations were elevated during the first (wet) year of study (median 

concentration=1.33 mg/l) and lower during the second (drought) year of study (median 

concentration = 0.7 mg/l). This suggests that during wetter periods organic matter was not 

breaking down as efficiently (Wilhelm et al. 1994b). Although the groundwater DON data 

were somewhat variable and did show a large decline in the first 20 m downgradient from 

the drainfield, DON concentrations greater than 20 m downgradient were still elevated above 

background groundwater DON concentrations, suggesting a wastewater source (Figure 4). 

This additional dissolved nitrogen contributes to elevated TDN at the site. The DON data 

suggest that there is a component of DON from the septic tank that is relatively mobile in 

groundwater. DON was typically the primary form of dissolved N in wastewater in the tank 

at this study site (mean DON= 68 mg/l; mean TDN= 86 mg/l). In their review, McCray et al. 

(2005) documented median DON values of 14 mg/l (n=6) and NH4
+-N values of 58 mg/l 

(n=37) for tank effluent from a number of studies. In the current study, the tank was pumped 

prior to monitoring, it is possible that the removal of sludge could affect the conversion of 

organic N to NH4
+ in the tank we studied, relative to those studied by McCray et al. (2005). 
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Similarly to McCray et al. (2005), Withers et al. (2011) found a range of 0–13.9 mg/l DON 

in tank effluent. DON is expected to be converted to inorganic forms and assumed to be a 

minor constituent in groundwater adjacent to OWTS (McCray et al. 2005 and Reay 2004).

Several recent studies suggest that TDN and DON in wastewater effluent in coastal North 

Carolina may be elevated compared to other regions. In a study that sampled 10 septic tanks 

for TDN in eastern North Carolina (Carteret County), Humphrey (2009) also found elevated 

DON in tanks, on average wastewater had more than 80 mg/l of DON. In addition, a study 

by Berkowitz (2007), suggested that wastewater effluent in coastal North Carolina tends to 

have elevated TDN compared to many other locations throughout the nation. His study 

showed median Total Kjeldahl N values for effluent of approximately 80 mg/l. In a recent 

study DON effluent was evaluated at 4 biological nutrient removal wastewater treatment 

plants, including one on the Neuse River, North Carolina (Sattayatewa et al. 2010). They 

found that treatment plants could remove 60–80% of DON, but effluent contained between 

0.5–2 mg/l DON. This range of effluent DON is similar to the range of groundwater DON 

we observed.

Elevated DON concentrations in surface waters have recently gained interest, as they may 

play an important role in supplying N nutrition to phytoplankton and bacteria (Berman and 

Bronk 2003). In Cape Cod, Kroeger et al. (2006b) suggested that DON could be the 

dominant form of N transport in coastal watersheds, and in some watersheds DON was 

contributed by anthropogenic sources (i.e. wastewater). Recent studies suggest that DON 

from anthropogenic sources may be more bioavailable to microbes and aquatic bacteria than 

DON from natural sources (various sources as cited in Pellerin et al. 2006). If DON 

compounds are biologically available they can affect the population dynamics and species 

diversity in aquatic ecosystems. Future work is needed to characterize the compounds that 

make up the DON pool in wastewater and groundwater and evaluate how mobile and 

bioavailable these compounds are in groundwater and surface water bodies. This is an 

important issue in the nutrient-sensitive Tar-Pamlico and Neuse watersheds in North 

Carolina, where DON concentrations in these rivers have been trending upwards over the 

last two decades (Lebo et al. 2012) and nutrient-sensitive management strategies are being 

undertaken.

Nitrogen Decline with Distance and Setback Regulations

TDN concentrations in groundwater downgradient from the drainfield revealed an 

exponential decay pattern with distance from the drainfield. The general trends were 

consistent with those published by Valiela et al. 1997 (Figure 5). Generally, TDN 

concentrations in the drainfield and downgradient groundwater were higher during the 

second year of study when drought conditions were prevalent. Although the groundwater 

TDN concentration data were variable, distance from the drainfield was a significant 

predictor of TDN concentration (Figure 5). Historically, North Carolina has been prone to 

drought and drought conditions have occurred in the state during 5 of the last 10 years (State 

Climate Office of North Carolina 2014b). Considering that the EPA’s maximum 

contaminant level for NO3
−-N in potable groundwater is 10 mg/l, these data suggest that 

during drought conditions this standard is likely to be exceeded in this sandy coastal aquifer.
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Based on the calculated mixing line for Cl− and TDN, the groundwater Cl− concentrations 

measured beneath the drainfield suggested that dilution of wastewater by upgradient 

groundwater flowing underneath the drainfield could account for up to 60% of concentration 

declines (Figure 6.a.). During the drought conditions from April–August 2011, drainfield 

groundwater TDN concentrations were slightly elevated above the mixing line and 

proximity to the mixing line suggested that dilution played a role in TDN decline. On other 

dates, when TDN concentrations in drainfield groundwater fell below the mixing line, other 

mechanisms such as denitrification must have played a more important role. Drainfield 

groundwater TDN and Cl− concentration data were compared with the tank wastewater 

concentration data and these data suggested that dilution plays an important role in TDN 

decline. Median Cl− concentration declined by 35% from the tank to the drainfield and 

median TDN declined by 68%, suggesting other mechanisms are responsible for TDN 

concentration declines (Figure 6.b.). A similar TDN decline was evident in lysimeter data 

(Table 1.a.). At depths of 0.9–1.2 m, TDN concentrations declined from a median 94 mg/l in 

wastewater to a median of 26 mg/l (72% decline) in the soil water. The median Cl− decline 

between the wastewater and soil water for the same sampling dates was 38%. The 

wastewater, drainfield groundwater, and soil water data revealed that the majority of N 

retention/loss occurred in the shallow soils and biomat, prior to groundwater recharge. On 

the dates that groundwater was sampled (excluding the October 2011 date that was affected 

by Hurricane Irene flooding) median tank Cl− concentration was 93.0 mg/l and TDN 

concentration was 93.8 mg/l. A Mann Whitney test showed tank Cl− concentration and tank 

TDN concentration distributions were not significantly different (p>0.05); however the 

median groundwater Cl− in the drainfield was 60 mg/l and groundwater TDN was 29.4 mg/l 

and these were significantly different (p=0.03). These data suggest that approximately 33 

mg/l of TDN concentration decline can be attributed to dilution and approximately 32 mg/l 

attributed to retention/loss of TDN between the tank and drainfield piezometers. The 

mechanisms responsible for this TDN concentration decline can include assimilation, cation 

exchange, and denitrification in the drainfield.

To further evaluate denitrification, groundwater dissolved oxygen and 15N and 18O in NO3
− 

patterns along the groundwater flowpath from the drainfield to the estuary were studied. The 

patterns suggest that denitrification plays a significant role in groundwater NO3
−-N declines 

(Figure 7). The relationship between 15N and 18O in NO3
− suggested a wastewater NO3

− 

source in the drainfield and isotopic enrichment along the flowpath from the drainfield to the 

estuary, particularly for piezometers 4, 5, 6, 7, 8, 10, and 16. These piezometers generally 

had elevated groundwater specific conductivity (Figure 1) and TDN concentrations, 

indicating the core of the wastewater plume. Based on the fractionation relationships 

provided by Chen et al. (2009) and Silva et al. (2002), the median 15N and 18O in 

NO3
−groundwater composition data suggest that denitrification accounts for approximately 

20% of the groundwater NO3
−-N concentration reduction at the drainfield, and up to 

approximately 85% of the groundwater NO3
− concentration reduction at piezometers 10 and 

16 close to the estuary (Figure 7.a.). The enrichment of NO3
−-15N and 18O in groundwater 

corresponded with a decrease in NO3
−-N concentrations in groundwater along the flowpath 

from the drainfield to the estuary (Figure 7.b.) consistent with a denitrification mechanism. 

Overall, the data suggested that due to dilution and denitrification, most of the groundwater 
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nitrate was attenuated. Although the groundwater NO3
−-N concentration declines from the 

drainfield piezometers (median NO3
−-N = 8.3 mg/l) along the groundwater flowpath to 

piezometer 10 (median NO3
−-N = 1.1 mg/l) and piezometer 16 (0.15 mg/l), directly adjacent 

to the estuary are large, the groundwater discharging to the estuary still had slightly elevated 

NO3
− concentrations above median background concentrations (0.03 mg/l).

Seasonality of OWTS Nitrogen Exports

On an annual basis, the average TDN load to the drainfield soils from the tank was 11.3 kg 

as N. Since there were two residents, this equated to approximately 5.7 kg-TDN/person-yr, 

similar to the per capita estimates of 5–6 kg-TDN/person-yr by the EPA (USEPA 2012b). 

However, because of attenuation processes in the soils and surficial aquifer, the groundwater 

TDN exports (assuming a 20 m by 3 m cross-sectional area) from the drainfield were much 

lower (mean drainfield exports 0.85 kg-TDN/yr). Based on the relationship between P-ET 

and groundwater TDN concentrations (Figure 2.b.) and groundwater flow rates (GW flow 

(L/month) = 407.1(P-ET cm) + 2094; R2=0.80) the study data suggest that seasonal 

variations in groundwater TDN concentrations and groundwater flow should result in 

seasonally variable N exports from the drainfield (Figure 8.a.–c.). To further evaluate the 

effects of seasonal variations of precipitation excess on groundwater N exports, P and ET 

data collected at the Tidewater Research Station, Plymouth NC from 2004–2012 were 

analyzed for seasonal patterns. These data revealed that precipitation deficits were common 

during the growing season (April-October; median P-ET = −3.77 cm) and precipitation 

excess was common during the dormant season (November-March; median P-ET=0.40 cm) 

(Figure 8.a.). Based on the relationships at the site between P-ET, drainfield groundwater 

TDN, and groundwater flow rates, the 2004–2012 P-ET patterns suggested that during the 

dormant season TDN concentrations should be lower but groundwater flow rates higher 

(Figure 8.b.). These relationships suggest an increase in TDN exports (Figure 8.c.) during 

the dormant season due to increased hydraulic head gradients and the resultant increase in 

groundwater discharge to the estuary.

The effects of recent weather patterns on groundwater levels can have an influence on both 

concentrations of TDN, due to the influence of dilution, and the mobility of TDN due to the 

effects of separation distance on N-speciation. The lack of groundwater recharge during 

periods of precipitation deficits caused the water table to decline, particularly during the 

growing season when ET rates are relatively high (approximately 70% of annual 

precipitation; Sun et al. 2002) in this region. The water table decline leads to increased 

separation distances, resulting in a thicker vadose zone and more aerated soils underneath 

the drainfield which promote nitrification. Generally, during drought periods, the highest 

NO3
−-N concentrations were observed in the drainfield because of increased nitrification 

and decreased dilution. Hantzche and Finnemore (1992) studied the effects of recharge on 

groundwater NO3
−-N concentrations adjacent to OWTS drainfields in three California 

communities (two in coastal settings). They developed a model that calculated the 

groundwater NO3
−-N concentrations as a function of wastewater loading and groundwater 

recharge and showed that increased levels of groundwater recharge can reduce the 

groundwater NO3
−-N concentrations adjacent to OWTS.
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At coastal sites with year-round residents, if there is a seasonal reduction in groundwater 

recharge due to elevated growing season evapotranspiration (Sun et al. 2002), then a growing 

season increase in drainfield groundwater TDN concentrations may occur due to the 

decrease in recharge and decreased dilution. In our study, drainfield groundwater TDN 

concentrations were elevated during drought conditions and declined during the wetter 

periods. In addition, in coastal communities with a strong tourism base, there may be 

increased wastewater loading during the summer tourist season. For example, in a study of 

three seasonally used septic systems in coastal Rhode Island, Postma et al. (1992) found that 

for houses occupied from July to September there was a large increase in groundwater 

NO3
−-N concentrations (up to 115 mg/l) adjacent to septic systems and increases in 

concentration were observed at least 6 m from the systems. This work showed that in sandy 

coastal areas with shallow water tables, seasonal variability in groundwater N inputs can 

also be influenced by seasonal tourism.

Conclusions

Coastal surficial aquifers can transmit OWTS N that contributes to surface water N loading. 

During wetter periods, increased groundwater discharge can lead to greater nutrient loading 

to adjacent water bodies, even though groundwater TDN concentrations may be lower. 

Although nitrate is commonly considered the most mobile N species in groundwater affected 

by OWTS in sandy surficial aquifers, we found that DON originating from the OWTS was 

mobile and contributed to elevated TDN concentrations along the groundwater flowpath to 

the estuary. Elevated concentrations of DON in groundwater were more common during wet 

periods. These results suggest that if future sea level rise results in shallower groundwater 

tables in coastal settings, there may be an increase in OWTS DON transport. Because of the 

linkages between groundwater recharge and OWTS N exports, future work is needed to help 

quantify the potential climate change impacts on OWTS treatment processes. The sandy 

coastal aquifers that span much of the Atlantic Coastal Plain have shallow water tables that 

are generally less than 2.5 m deep (Fan et al. 2013). OWTS in these settings are sensitive to 

changes in precipitation excess and groundwater recharge. A better understanding of the 

temporal variability of nutrients from onsite and centralized wastewater treatment systems is 

needed to help guide sustainable development in nutrient-sensitive coastal settings.
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Abbreviations

DON dissolved organic nitrogen

ET evapotranspiration

NO3
− nitrate

NH4
+ ammonium

OWTS onsite wastewater treatment systems

P precipitation

TDN total dissolved nitrogen
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Figure 1. 
a. Study site adjacent to the Pamlico River Estuary showing locations of piezometers 

(circles) and lysimeters (boxes: DF=drainfield; UG= upgradient/ background). The dashed 

black line indicates approximate extent of the drainfield and solid black lines indicate 

drainpipes. Piezometers 2, 4, 5, 6, 7, 8, 9, 10, 13, 14, and 15 were nested and contained a 

deep and shallow piezometer. The white dashed line from A-A′ is the location of the 

resistivity transect. b. Electrical resistivity survey (Feb. 2, 2011) from A-A′. The resistivity 

data (ohm-m) is underlain by piezometer groundwater conductivity data.
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Figure 2. 
a. Separation distance (m) [y= 12.147 e1.713x] or tank loading (kg-N/month) [y=6.722 

e1.374x] versus the drainfield groundwater TDN concentrations. b. Effective precipitation 

(Precipitation-evapotranspiration (cm)) for two weeks prior to sampling versus the drainfield 

groundwater TDN concentrations [y=31.231 e−0.102x]. c. Drainfield groundwater nitrogen 

concentrations grouped by sampling dates during periods of precipitation deficits (P<ET) or 

precipitation excess (P>ET).
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Figure 3. 
a. Relationship between effective precipitation (P-ET) for two weeks prior to sampling and 

separation distance. b. Separation distance vs. annual average % of N that occurred in 

drainfield groundwater as nitrate for the current study and a recent study by Humphrey et al. 

(2010a) in Craven County, NC.
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Figure 4. 
Nitrogen species concentration in groundwater related to distance from drainfield. 

Upgradient (UG) concentrations were measured at upgradient piezometers (1 and 2).
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Figure 5. 
Measured TDN concentrations versus distance from drainfield for Year 1 (red circles) and 

Year 2 (blue circles) compared to a range of values documented in an earlier study by Valiela 

et al. (1997).
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Figure 6. 
a. Chloride and TDN concentrations in drainfield groundwater plotted with 2-component 

mixing model line (components of wastewater and background groundwater). b. The 

boxplots display the 25th to 75th percentiles within the box; the median is indicated by the 

line inside the box. The whiskers extend to the upper and lower limits of the distribution, 

and asterisks indicate unusually large or small outliers. The boxplots show the declines in 

TDN and CL between the tank (wastewater) and drainfield groundwater.
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Fig. 7. 
(a) Enrichment in median 15N and 18O in NO3

− indicates a groundwater flow path from 

drainfield (1p4) to the piezometer bordering the estuary (1p16). The relationship 

between 15N and 18O suggests that the NO3
− source in piezometers 4d, 5d, 6d, 7d, 9d, 10d, 

and 16 is from the wastewater effluent and as denitrification progresses along the 

groundwater flowpath progressive enrichment of 15N and 18O occur in the NO3
−. (b) 

Median groundwater NO3
− vs. 15N and 18O patterns along a groundwater flowpath from the 

drainfield to the estuary (piezometers 4d, 5d, 6d, 7d, 9d, 10d, and 16) on the dates of 

isotopic sampling.
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Fig. 8. 
(a) Monthly effective precipitation (precipitation-ET) at Plymouth, NC from 2004–2012. 

The boxplots display the 25th to 75th percentiles within the box; the median is indicated by 

the line inside the box. The whiskers extend to the upper and lower limits of the distribution, 

and asterisks indicate unusually large or small outliers. (b) Predicted monthly groundwater 

flow and drainfield groundwater TDN concentration. c. Predicted monthly TDN load.
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Table 1

a. Summary of mean (standard deviation) of water quality parameters for upgradient groundwater (UG; 

piezometers 1 and 2), septic tank wastewater (ST), drainfield groundwater (DF; piezometers 4s and d), 

groundwater < 15 m from the drainfield (<15 m; piezometers 4, 5, and 6), and groundwater > 15 m from the 

drainfield (>15 m; piezometers 7,8,9,10, 13, 14, 15, 16, 17, and 18). *due to flooding from Hurricane Irene, 

the October 3, 2011 soil water was affected by brackish waters from the estuary that elevated the specific 

conductance, if this date was excluded, UG soil water specific conductivity would be 0.034 and DF soil water 

0.67 mS/cm. b. Summary of median N concentrations (in mg/l). Mann-Whitney test results compared the 

groundwater N concentrations upgradient (UG) from the drainfield with groundwater in the drainfield [DF], 

and downgradient from the drainfield [GW<15m and GW>15m] (italics indicates significant differences at 

p<0.0125; p-value for significance, adjusted for multiple comparisons using the Bonferroni method for four 

comparisons [p=0.05/4=0.0125] as Abdi recommended in 2007).

a.

Source (n) Temp (C) pH D.O. (mg/l) Sp.Cond. (mS/cm) NH4
+-N (mg/l) NO3

−N (mg/l) DON (mg/l) TDN (mg/l)

Wastewater

ST (13) 18.8 (4.6) 6.50 (1.0) 0.37 (0.2) 1.64 (1.5) 17.3 (5.9) 0.01 (0.0) 68.2 (18) 85.5 (18)

Soil Water

UG (10) 16.9 (3.8) 6.8 (0.4) 7.3 (1.2) 0.85 (2.1)* 0.03 (0.0) 0.04 (0.0) 0.24 (0.1) 0.27 (0.2)

DF (12) 15.0 (4.6) 6.9 (0.5) 6.2 (1.5) 1.04 (0.8)* 0.79 (1.3) 22.3 (21) 0.92 (0.9) 28.2 (23)

Groundwater

UG (15) 14.9 (4.6) 6.38 (0.7) 4.35 (1.8) 0.28 (0.6) 0.24 (0.2) 0.05 (0.1) 0.29 (0.2) 0.59 (0.4)

DF (17) 15.6 (4.3) 6.41 (0.6) 2.79 (1.4) 0.98 (0.4) 4.32 (5.2) 21.0 (31) 6.28 (9.9) 31.6 (29)

< 15 m (46) 16.5 (4.0) 6.53 (0.6) 2.35 (1.1) 0.99 (1.1) 1.93 (3.6) 13.1 (22) 2.81 (6.2) 17.6 (23)

> 15 m (101) 17.8 (5.7) 6.52 (0.6) 2.22 (1.0) 1.76 (2.8) 0.53 (1.1) 1.09 (4.1) 0.92 (0.7) 2.55 (4.4)

b.

N-Species UG DF (median) GW<15m GW>15m Mann-Whitney Test

NH4
+-N 0.17 1.43 0.27 0.11 DF>UG (p=0.03) <15m >UG (p=0.08) >15m>UG (p=0.99)

NO3
−-N 0.03 8.28 3.86 0.05 DF>UG (p<0.01) <15m>UG (p<0.01) >15m>UG (p=0.14)

DON 0.28 1.63 1.00 0.77 DF>UG (p<0.01) <15m>UG (p<0.01) >15m>UG (p<0.01)

TDN 0.56 16.0 8.71 1.24 DF>UG (p<0.01) <15m>UG (p<0.01) >15m>UG (p<0.01)
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